1. Coordinate Systems.

The usual equatorial coordinate system has the z-axis pointing to the North Celestial Pole (NCP), the x-and y-axes in the equatorial plane with the x-axis pointing toward the equinox. It is more convenient for present purposes to have the x -axis pointing to the NCP, and the negative z -axis pointing toward the equinox. Thus a unit line-of-sight (LOS) vector in this coordinate system toward an object with right ascension α and declination δ is

$$
\begin{equation*}
\mathbf{v}_{\mathrm{eq}}=(s \delta, \quad c \delta s \alpha, \quad-c \delta c \alpha)^{\prime} \tag{1.1}
\end{equation*}
$$

The axes for a local level coordinate system ("altaz" or "NED" coordinate system) are chosen with the xaxis level and pointing north, the z-axis down. The unit LOS vector in this coordinate system toward an object with azimuth ψ and altitude θ is

$$
\begin{equation*}
\mathbf{v}_{\mathrm{aa}}=(c \theta c \psi, \quad c \theta s \psi, \quad-s \theta)^{\prime} \tag{1.2}
\end{equation*}
$$

The final coordinate system has the x -axis aligned with the telescope, y and z in the field-of-view, with z down. If the telescope has the object centered in the FOV, then the unit LOS vector

$$
\mathbf{v}_{\mathbf{t}}=\mathbf{e}=\left(\begin{array}{lll}
1, & 0, & 0 \tag{1.3}
\end{array}\right)^{\prime}
$$

2. Transformations.

The transformation from equatorial to altaz consists of two rotations, sidereal time t about the x -axis, then latitude l about the -y-axis:

$$
\begin{equation*}
\mathbf{v}_{\mathrm{aa}}=\mathbf{L S} \mathbf{v}_{\mathrm{eq}} \tag{2.1}
\end{equation*}
$$

Written out, the two rotations are given by the 3×3 orthogonal matrices:

$$
\mathbf{L}=\left(\begin{array}{ccc}
c \ell & 0 & s \ell \tag{2.2}\\
0 & 1 & 0 \\
-s \ell & 0 & c \ell
\end{array}\right), \quad \mathbf{S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c t & s t \\
0 & -s t & c t
\end{array}\right)
$$

Similarly, the transformation from altaz to the telescope coordinates pointing at azimuth ψ and altitude θ also consists of two rotations, a rotation ψ about the z-axis, then θ about the resulting y-axis:

$$
\begin{equation*}
\mathbf{v}_{\mathrm{t}}=\Theta \Psi \mathbf{v}_{\mathrm{aa}} \tag{2.3}
\end{equation*}
$$

with

$$
\Theta=\left(\begin{array}{ccc}
c \theta & 0 & -s \theta \tag{2.4}\\
0 & 1 & 0 \\
s \theta & 0 & c \theta
\end{array}\right), \quad \Psi=\left(\begin{array}{ccc}
c \psi & s \psi & 0 \\
-s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Combining (2.1) and (2.3),

$$
\begin{equation*}
\mathbf{v}_{\mathrm{t}}=\Theta \Psi \mathbf{L S} \mathbf{v}_{\mathrm{eq}} \tag{2.5}
\end{equation*}
$$

3. Differentials.

Differential changes of these matrices can be expressed in terms of the antisymmetric "unit rotators":

$$
\mathbf{U}_{\mathbf{x}}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{3.1}\\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), \quad \mathbf{U}_{\mathbf{y}}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \mathbf{U}_{\mathbf{z}}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

For example, taking the differential of the azimuth rotation matrix Ψ gives, in terms of a small azimuth angular change $\delta \psi$,

$$
\delta \Psi=\delta \psi\left(\begin{array}{ccc}
-s \psi & c \psi & 0 \tag{3.2}\\
-c \psi & -s \psi & 0 \\
0 & 0 & 0
\end{array}\right)=\delta \psi \mathbf{U}_{\mathbf{z}} \Psi
$$

4. Pointing Errors.

Errors $\delta \alpha, \delta \delta$ in right ascension and declination, respectively, produce the equatorial LOS error vector

$$
\begin{equation*}
\delta \mathbf{v}_{\mathrm{eq}}=(s(\delta+\delta \delta), c(\delta+\delta \delta) s(\alpha+\delta \alpha),-c(\delta+\delta \delta) c(\alpha+\delta \alpha))-\mathbf{v}_{\mathrm{eq}} \tag{4.1}
\end{equation*}
$$

With the rotation matrices for pointing at the catalog position of an object, the equatorial error vector $\delta \mathbf{v}_{\text {eq }}$ produces, from (2.5), the pointing error vector in telescope coordinates:

$$
\begin{equation*}
\delta \mathbf{v}_{\mathrm{t}}=(\Theta \Psi \mathbf{L S}) \delta \mathbf{v}_{\mathrm{eq}} \tag{4.2}
\end{equation*}
$$

On the other hand, rotation errors $\delta t, \delta \ell, \delta \psi, \delta \theta$ produce the telescope pointing error

$$
\begin{align*}
\delta \mathbf{v}_{\mathrm{t}} & =(\delta \Theta \Psi \mathbf{L S}+\Theta \delta \Psi \mathbf{L S}+\Theta \Psi \delta \mathbf{L S}+\Theta \Psi \mathbf{L} \delta \mathbf{S}) \mathbf{v}_{\mathrm{eq}} \\
& =\left(\delta \theta \mathbf{U}_{\mathbf{y}} \Theta \Psi \mathbf{L S}+\delta \psi \Theta \mathbf{U}_{\mathbf{z}} \Psi \mathbf{L S}-\delta \ell \Theta \Psi \mathbf{U}_{\mathbf{y}} \mathbf{L S}+\delta t \Theta \Psi \mathbf{L} \mathbf{U}_{\mathbf{x}} \mathbf{S}\right) \mathbf{v}_{\mathrm{eq}} \tag{4.3}
\end{align*}
$$

Using (1.3) and (2.5),

$$
\begin{equation*}
\delta \mathbf{v}_{\mathbf{t}}=\left(\mathbf{U}_{\mathbf{y}} \mathbf{e}\right) \delta \theta+\left(\Theta \mathbf{U}_{\mathbf{z}} \Psi \mathbf{v}_{\mathrm{aa}}\right) \delta \psi-\left(\Theta \Psi \mathbf{U}_{\mathbf{y}} \mathbf{v}_{\mathrm{aa}}\right) \delta \ell+\left(\Theta \Psi \mathbf{L} \mathbf{U}_{\mathbf{x}} \mathbf{S} \mathbf{v}_{\mathrm{eq}}\right) \delta t \tag{4.4}
\end{equation*}
$$

To use this equation for evaluating the accuracy of altaz alignment, it is more convenient to use (2.1) in the last term,

$$
\begin{equation*}
\delta \mathbf{v}_{\mathbf{t}}=\left(\mathbf{U}_{\mathbf{y}} \mathbf{e}\right) \delta \theta+\left(\Theta \mathbf{U}_{\mathbf{z}} \Psi \mathbf{v}_{\mathrm{aa}}\right) \delta \psi-\left(\Theta \Psi \mathbf{U}_{\mathbf{y}} \mathbf{v}_{\mathrm{aa}}\right) \delta \ell+\left(\Theta \Psi \mathbf{L} \mathbf{U}_{\mathbf{x}} \mathbf{L}^{\prime} \mathbf{v}_{\mathrm{aa}}\right) \delta t \tag{4.5}
\end{equation*}
$$

Set up the state vector $\mathbf{x}=(\delta \theta, \delta \psi, \delta \ell, \delta t)^{\prime}$, and the observation vector formed from the last two elements of $\delta \mathbf{v}_{\mathbf{t}}, \mathbf{z}=\left(\delta \mathbf{v}_{\mathbf{t}}(2), \delta \mathbf{v}_{\mathbf{t}}(3)\right)^{\prime}$, then the 2×4 observation matrix \mathbf{H} such that $\mathbf{z}=\mathbf{H x}$ is formed from the last two elements of each vector coefficient in (4.5). Let $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{H}_{1}, \mathbf{H}_{2}$ be the observation vectors and matrices for two alignment stars and

$$
\mathbf{z}_{4}=\left[\begin{array}{l}
\mathbf{z}_{1} \tag{4.6}\\
\mathbf{z}_{2}
\end{array}\right], \quad \mathbf{H}_{4}=\left[\begin{array}{l}
\mathbf{H}_{1} \\
\mathbf{H}_{2}
\end{array}\right]
$$

Assuming \mathbf{H}_{4} is non-singular and the errors of the observations are uncorrelated with unit variance, the covariance matrix of the rotation errors is

$$
\begin{equation*}
E\left\{\mathbf{x x}^{\prime}\right\}=E\left\{\mathbf{H}_{4}{ }^{-1} \mathbf{z}_{4} \mathbf{z}_{4}^{\prime}\left(\mathbf{H}_{4}\right)^{-1}\right\}=\left(\mathbf{H}_{4} \mathbf{H}_{4}\right)^{-1}=\left(\mathbf{H}_{1} \mathbf{H}_{1}+\mathbf{H}_{2}{ }^{\prime} \mathbf{H}_{2}\right)^{-1}=\mathbf{P} \tag{4.7}
\end{equation*}
$$

The covariance matrix of the pointing errors resulting from this alignment is $\mathbf{H P H}$ ' where \mathbf{H} is the observation matrix at another star.

